Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(2)2023 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-36674751

RESUMO

ABCB4 (ATP-binding cassette subfamily B member 4) is a hepatocanalicular floppase involved in biliary phosphatidylcholine (PC) secretion. Variations in the ABCB4 gene give rise to several biliary diseases, including progressive familial intrahepatic cholestasis type 3 (PFIC3), an autosomal recessive disease that can be lethal in the absence of liver transplantation. In this study, we investigated the effect and potential rescue of ten ABCB4 missense variations in NBD1:NBD2 homologous positions (Y403H/Y1043H, K435M/K1075M, E558K/E1200A, D564G/D1206G and H589Y/H1231Y) all localized at the conserved and functionally critical motifs of ABC transporters, six of which are mutated in patients. By combining structure analysis and in vitro studies, we found that all ten mutants were normally processed and localized at the canalicular membrane of HepG2 cells, but showed dramatically impaired PC transport activity that was significantly rescued by treatment with the clinically approved CFTR potentiator ivacaftor. Our results provide evidence that functional ABCB4 mutations are rescued by ivacaftor, paving the way for the repositioning of this potentiator for the treatment of selected patients with PFIC3 caused by mutations in the ATP-binding sites of ABCB4.


Assuntos
Colestase Intra-Hepática , Mutação de Sentido Incorreto , Humanos , Reposicionamento de Medicamentos , Colestase Intra-Hepática/tratamento farmacológico , Colestase Intra-Hepática/genética , Fosfatidilcolinas , Trifosfato de Adenosina
2.
iScience ; 25(10): 105166, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36204273

RESUMO

Receptor-interacting protein kinase-3 (RIPK3) and mixed lineage kinase domain-like (MLKL) proteins are key regulators of necroptosis, a highly pro-inflammatory mode of cell death, which has been involved in various human diseases. Necroptotic-independent functions of RIPK3 and MLKL also exist, notably in the adipose tissue but remain poorly defined. Using knock-out (KO) cell models, we investigated the role of RIPK3 and MLKL in adipocyte differentiation. Mlkl-KO abolished white adipocyte differentiation via a strong expression of Wnt10b, a ligand of the Wnt/ß-catenin pathway, and a downregulation of genes involved in lipid metabolism. This effect was not recapitulated by the ablation of Ripk3. Conversely, Mlkl and Ripk3 deficiencies did not block beige adipocyte differentiation. These findings indicate that RIPK3 and MLKL have distinct roles in adipogenesis. The absence of MLKL blocks the differentiation of white, but not beige, adipocytes highlighting the therapeutic potential of MLKL inhibition in obesity.

3.
Cells ; 11(4)2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35203270

RESUMO

ABCB4, is an adenosine triphosphate-binding cassette (ABC) transporter localized at the canalicular membrane of hepatocytes, where it mediates phosphatidylcholine secretion into bile. Gene variations of ABCB4 cause different types of liver diseases, including progressive familial intrahepatic cholestasis type 3 (PFIC3). The molecular mechanisms underlying the trafficking of ABCB4 to and from the canalicular membrane are still unknown. We identified the serine/threonine kinase Myotonic dystrophy kinase-related Cdc42-binding kinase isoform α (MRCKα) as a novel partner of ABCB4. The role of MRCKα was explored, either by expression of dominant negative mutant or by gene silencing using the specific RNAi and CRISPR-cas9 strategy in cell models. The expression of a dominant-negative mutant of MRCKα and MRCKα inhibition by chelerythrine both caused a significant increase in ABCB4 steady-state expression in primary human hepatocytes and HEK-293 cells. RNA interference and CRISPR-Cas9 knockout of MRCKα also caused a significant increase in the amount of ABCB4 protein expression. We demonstrated that the effect of MRCKα was mediated by its downstream effector, the myosin II regulatory light chain (MRLC), which was shown to also bind ABCB4. Our findings provide evidence that MRCKα and MRLC bind to ABCB4 and regulate its cell surface expression.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP , Colestase Intra-Hepática , Colestase , Miotonina Proteína Quinase , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Células HEK293 , Humanos , Cadeias Leves de Miosina , Miosina Tipo II , Miotonina Proteína Quinase/metabolismo
4.
Int J Mol Sci ; 22(13)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209301

RESUMO

ABCB4 (ATP-binding cassette subfamily B member 4) is an ABC transporter expressed at the canalicular membrane of hepatocytes where it ensures phosphatidylcholine secretion into bile. Genetic variations of ABCB4 are associated with several rare cholestatic diseases. The available treatments are not efficient for a significant proportion of patients with ABCB4-related diseases and liver transplantation is often required. The development of novel therapies requires a deep understanding of the molecular mechanisms regulating ABCB4 expression, intracellular traffic, and function. Using an immunoprecipitation approach combined with mass spectrometry analyses, we have identified the small GTPase RAB10 as a novel molecular partner of ABCB4. Our results indicate that the overexpression of wild type RAB10 or its dominant-active mutant significantly increases the amount of ABCB4 at the plasma membrane expression and its phosphatidylcholine floppase function. Contrariwise, RAB10 silencing induces the intracellular retention of ABCB4 and then indirectly diminishes its secretory function. Taken together, our findings suggest that RAB10 regulates the plasma membrane targeting of ABCB4 and consequently its capacity to mediate phosphatidylcholine secretion.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membrana Celular/metabolismo , Hepatócitos/metabolismo , Fosfatidilcolinas/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Transporte Biológico Ativo , Membrana Celular/genética , Células HEK293 , Células HeLa , Humanos , Fosfatidilcolinas/genética , Proteínas rab de Ligação ao GTP/genética
5.
Int J Mol Sci ; 22(4)2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33672718

RESUMO

The ATP-binding cassette (ABC) transporters expressed at the canalicular membrane of hepatocytes mediate the secretion of several compounds into the bile canaliculi and therefore play a key role in bile secretion. Among these transporters, ABCB11 secretes bile acids, ABCB4 translocates phosphatidylcholine and ABCG5/G8 is responsible for cholesterol secretion, while ABCB1 and ABCC2 transport a variety of drugs and other compounds. The dysfunction of these transporters leads to severe, rare, evolutionary biliary diseases. The development of new therapies for patients with these diseases requires a deep understanding of the biology of these transporters. In this review, we report the current knowledge regarding the regulation of canalicular ABC transporters' folding, trafficking, membrane stability and function, and we highlight the role of molecular partners in these regulating mechanisms.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Canalículos Biliares/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Endocitose , Glicosilação , Hepatócitos/metabolismo , Humanos , Proteína 2 Associada à Farmacorresistência Múltipla , Ubiquitinação
6.
Liver Int ; 41(6): 1344-1357, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33650203

RESUMO

BACKGROUND & AIM: ABCB4 is expressed at the canalicular membrane of hepatocytes. This ATP-binding cassette (ABC) transporter is responsible for the secretion of phosphatidylcholine into bile canaliculi. Missense genetic variations of ABCB4 are correlated with several rare cholestatic liver diseases, the most severe being progressive familial intrahepatic cholestasis type 3 (PFIC3). In a repurposing strategy to correct intracellularly retained ABCB4 variants, we tested 16 compounds previously validated as cystic fibrosis transmembrane conductance regulator (CFTR) correctors. METHODS: The maturation, intracellular localization and activity of intracellularly retained ABCB4 variants were analyzed in cell models after treatment with CFTR correctors. In addition, in silico molecular docking calculations were performed to test the potential interaction of CFTR correctors with ABCB4. RESULTS: We observed that the correctors C10, C13, and C17, as well as the combinations of C3 + C18 and C4 + C18, allowed the rescue of maturation and canalicular localization of four distinct traffic-defective ABCB4 variants. However, such treatments did not permit a rescue of the phosphatidylcholine secretion activity of these defective variants and were also inhibitory of the activity of wild type ABCB4. In silico molecular docking analyses suggest that these CFTR correctors might directly interact with transmembrane domains and/or ATP-binding sites of the transporter. CONCLUSION: Our results illustrate the uncoupling between the traffic and the activity of ABCB4 because the same molecules can rescue the traffic of defective variants while they inhibit the secretion activity of the transporter. We expect that this study will help to design new pharmacological tools with potential clinical interest.


Assuntos
Colestase Intra-Hepática , Colestase , Subfamília B de Transportador de Cassetes de Ligação de ATP , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Humanos , Simulação de Acoplamento Molecular , Fosfatidilcolinas
7.
Liver Int ; 40(8): 1917-1925, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32433800

RESUMO

BACKGROUND & AIM: The canalicular bile salt export pump (BSEP/ABCB11) of hepatocytes is the main adenosine triphosphate (ATP)-binding cassette (ABC) transporter responsible for bile acid secretion. Mutations in ABCB11 cause several cholestatic diseases, including progressive familial intrahepatic cholestasis type 2 (PFIC2) often lethal in absence of liver transplantation. We investigated in vitro the effect and potential rescue of a BSEP mutation by ivacaftor, a clinically approved cystic fibrosis transmembrane conductance regulator (CFTR/ABCC7) potentiator. METHODS: The p.T463I mutation, identified in a PFIC2 patient and located in a highly conserved ABC transporter motif, was studied by 3D structure modelling. The mutation was reproduced in a plasmid encoding a rat Bsep-green fluorescent protein. After transfection, mutant expression was studied in Can 10 cells. Taurocholate transport activity and ivacaftor effect were studied in Madin-Darby canine kidney (MDCK) clones co-expressing the rat sodium-taurocholate co-transporting polypeptide (Ntcp/Slc10A1). RESULTS: As the wild-type protein, BsepT463I was normally targeted to the canalicular membrane of Can 10 cells. As predicted by 3D structure modelling, taurocholate transport activity was dramatically low in MDCK clones expressing BsepT463I . Ivacaftor treatment increased by 1.7-fold taurocholate transport activity of BsepT463I (P < .0001), reaching 95% of Bsepwt activity. These data suggest that the p.T463I mutation impairs ATP-binding, resulting in Bsep dysfunction that can be rescued by ivacaftor. CONCLUSION: These results provide experimental evidence of ivacaftor therapeutic potential for selected patients with PFIC2 caused by ABCB11 missense mutations affecting BSEP function. This could represent a significant step forward for the care of patients with BSEP deficiency.


Assuntos
Colestase Intra-Hepática , Quinolonas , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/genética , Aminofenóis , Animais , Ácidos e Sais Biliares , Colestase Intra-Hepática/tratamento farmacológico , Colestase Intra-Hepática/genética , Cães , Humanos , Ratos
8.
J Hepatol ; 72(4): 627-635, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31760070

RESUMO

BACKGROUND & AIMS: In non-alcoholic fatty liver disease (NAFLD), hepatocytes can undergo necroptosis: a regulated form of necrotic cell death mediated by the receptor-interacting protein kinase (RIPK) 1. Herein, we assessed the potential for RIPK1 and its downstream effector mixed lineage kinase domain-like protein (MLKL) to act as therapeutic targets and markers of activity in NAFLD. METHODS: C57/BL6J-mice were fed a normal chow diet or a high-fat diet (HFD). The effect of RIPA-56, a highly specific inhibitor of RIPK1, was evaluated in HFD-fed mice and in primary human steatotic hepatocytes. RIPK1 and MLKL concentrations were measured in the serum of patients with NAFLD. RESULTS: When used as either a prophylactic or curative treatment for HFD-fed mice, RIPA-56 caused a downregulation of MLKL and a reduction of liver injury, inflammation and fibrosis, characteristic of non-alcoholic steatohepatitis (NASH), as well as of steatosis. This latter effect was reproduced by treating primary human steatotic hepatocytes with RIPA-56 or necrosulfonamide, a specific inhibitor of human MLKL, and by knockout (KO) of Mlkl in fat-loaded AML-12 mouse hepatocytes. Mlkl-KO led to activation of mitochondrial respiration and an increase in ß-oxidation in steatotic hepatocytes. Along with decreased MLKL activation, Ripk3-KO mice exhibited increased activities of the liver mitochondrial respiratory chain complexes in experimental NASH. In patients with NAFLD, serum concentrations of RIPK1 and MLKL increased in correlation with activity. CONCLUSION: The inhibition of RIPK1 improves NASH features in HFD-fed mice and reverses steatosis via an MLKL-dependent mechanism that, at least partly, involves an increase in mitochondrial respiration. RIPK1 and MLKL are potential serum markers of activity and promising therapeutic targets in NAFLD. LAY SUMMARY: There are currently no pharmacological treatment options for non-alcoholic fatty liver disease (NAFLD), which is now the most frequent liver disease. Necroptosis is a regulated process of cell death that can occur in hepatocytes during NAFLD. Herein, we show that RIPK1, a gatekeeper of the necroptosis pathway that is activated in NAFLD, can be inhibited by RIPA-56 to reduce not only liver injury, inflammation and fibrosis, but also steatosis in experimental models. These results highlight the potential of RIPK1 as a therapeutic target in NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Inibidores de Proteínas Quinases/administração & dosagem , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Proteína Serina-Treonina Quinases de Interação com Receptores/sangue , Acrilamidas/farmacologia , Idoso , Animais , Dieta Hiperlipídica , Modelos Animais de Doenças , Feminino , Técnicas de Inativação de Genes , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Necroptose/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteínas Quinases/sangue , Proteínas Quinases/deficiência , Proteínas Quinases/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/deficiência , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/farmacologia , Resultado do Tratamento
9.
Sci Rep ; 9(1): 6653, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-31040306

RESUMO

Adenosine triphosphate binding cassette transporter, subfamily B member 4 (ABCB4) is the transporter of phosphatidylcholine at the canalicular membrane of hepatocytes. ABCB4 deficiency, due to genetic variations, is responsible for progressive familial intrahepatic cholestasis type 3 (PFIC3) and other rare biliary diseases. Roscovitine is a molecule in clinical trial that was shown to correct the F508del variant of cystic fibrosis transmembrane conductance regulator (CFTR), another ABC transporter. In the present study, we hypothesized that roscovitine could act as a corrector of ABCB4 traffic-defective variants. Using HEK and HepG2 cells, we showed that roscovitine corrected the traffic and localisation at the plasma membrane of ABCB4-I541F, a prototypical intracellularly retained variant. However, roscovitine caused cytotoxicity, which urged us to synthesize non-toxic structural analogues. Roscovitine analogues were able to correct the intracellular traffic of ABCB4-I541F in HepG2 cells. Importantly, the phospholipid secretion activity of this variant was substantially rescued by three analogues (MRT2-235, MRT2-237 and MRT2-243) in HEK cells. We showed that these analogues also triggered the rescue of intracellular traffic and function of two other intracellularly retained ABCB4 variants, i.e. I490T and L556R. Our results indicate that structural analogues of roscovitine can rescue genetic variations altering the intracellular traffic of ABCB4 and should be considered as therapeutic means for severe biliary diseases caused by this class of variations.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/farmacologia , Retículo Endoplasmático/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Roscovitina/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Antineoplásicos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Imunofluorescência , Humanos , Estrutura Molecular , Proteínas Mutantes , Inibidores de Proteínas Quinases/química , Transporte Proteico/efeitos dos fármacos , Roscovitina/análogos & derivados , Roscovitina/química
10.
Int J Biochem Cell Biol ; 89: 101-109, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28587926

RESUMO

Genetic variations of the phosphatidylcholine transporter, ABCB4 cause several biliary diseases. The large number of reported variations makes it difficult to foresee a comprehensive study of each variation. To appreciate the reliability of in silico prediction programs, 1) we confronted them with the assessment in cell models of two ABCB4 variations (E528D and P1161S) identified in patients with low phospholipid-associated cholelithiasis (LPAC); 2) we extended the confrontation to 19 variations that we had previously characterized in cellulo. Four programs (Provean, Polyphen-2, PhD-SNP and MutPred) were used to predict the degree of pathogenicity. The E528D and P1161S variants were studied in transfected HEK293 and HepG2 cells by immunofluorescence, immunoblotting and measurement of phosphatidylcholine secretion. All prediction tools qualified the P1161S variation as deleterious, but provided conflicting results for E528D. In cell models, both mutants were expressed and localized as the wild type but their activity was significantly reduced, by 48% (P1161S) and 33% (E528D). These functional defects best correlated with MutPred predictions. MutPred program also proved the most accurate to predict the pathogenicity of the 19 ABCB4 variants that we previously characterized in cell models, and the most sensitive to predict the pathogenicity of 65 additional mutations of the Human Gene Mutation Database. These results confirm the pathogenicity of E528D and P1161S variations and suggest that even a moderate decrease (by less than 50%) of phosphatidylcholine secretion can cause LPAC syndrome. They highlight the reliability of in silico prediction tools, most notably MutPred, as a first approach to predict the pathogenicity of ABCB4 variants.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Colelitíase/genética , Simulação por Computador , Variação Genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/química , Sequência de Aminoácidos , Animais , Colelitíase/metabolismo , Feminino , Regulação da Expressão Gênica , Células HEK293 , Células Hep G2 , Humanos , Masculino , Modelos Moleculares , Mutação , Fosfatidilcolinas/metabolismo , Conformação Proteica
11.
Hepatology ; 65(2): 560-570, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28012258

RESUMO

ABCB4 (MDR3) is an adenosine triphosphate (ATP)-binding cassette (ABC) transporter expressed at the canalicular membrane of hepatocytes, where it mediates phosphatidylcholine (PC) secretion. Variations in the ABCB4 gene are responsible for several biliary diseases, including progressive familial intrahepatic cholestasis type 3 (PFIC3), a rare disease that can be lethal in the absence of liver transplantation. In this study, we investigated the effect and potential rescue of ABCB4 missense variations that reside in the highly conserved motifs of ABC transporters, involved in ATP binding. Five disease-causing variations in these motifs have been identified in ABCB4 (G535D, G536R, S1076C, S1176L, and G1178S), three of which are homologous to the gating mutations of cystic fibrosis transmembrane conductance regulator (CFTR or ABCC7; i.e., G551D, S1251N, and G1349D), that were previously shown to be function defective and corrected by ivacaftor (VX-770; Kalydeco), a clinically approved CFTR potentiator. Three-dimensional structural modeling predicted that all five ABCB4 variants would disrupt critical interactions in the binding of ATP and thereby impair ATP-induced nucleotide-binding domain dimerization and ABCB4 function. This prediction was confirmed by expression in cell models, which showed that the ABCB4 mutants were normally processed and targeted to the plasma membrane, whereas their PC secretion activity was dramatically decreased. As also hypothesized on the basis of molecular modeling, PC secretion activity of the mutants was rescued by the CFTR potentiator, ivacaftor (VX-770). CONCLUSION: Disease-causing variations in the ATP-binding sites of ABCB4 cause defects in PC secretion, which can be rescued by ivacaftor. These results provide the first experimental evidence that ivacaftor is a potential therapy for selected patients who harbor mutations in the ATP-binding sites of ABCB4. (Hepatology 2017;65:560-570).


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Aminofenóis/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/genética , Mutagênese/efeitos dos fármacos , Quinolonas/farmacologia , Trifosfato de Adenosina/genética , Adolescente , Sítios de Ligação , Células Cultivadas , Criança , Fibrose Cística/patologia , Feminino , Células Hep G2 , Humanos , Masculino , Mutação de Sentido Incorreto/genética , Fosfatidilcolinas/metabolismo , Estudos de Amostragem , Transfecção , Adulto Jovem
12.
PLoS One ; 11(1): e0146962, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26789121

RESUMO

ABCB4/MDR3, a member of the ABC superfamily, is an ATP-dependent phosphatidylcholine translocator expressed at the canalicular membrane of hepatocytes. Defects in the ABCB4 gene are associated with rare biliary diseases. It is essential to understand the mechanisms of its canalicular membrane expression in particular for the development of new therapies. The stability of several ABC transporters is regulated through their binding to PDZ (PSD95/DglA/ZO-1) domain-containing proteins. ABCB4 protein ends by the sequence glutamine-asparagine-leucine (QNL), which shows some similarity to PDZ-binding motifs. The aim of our study was to assess the potential role of the QNL motif on the surface expression of ABCB4 and to determine if PDZ domain-containing proteins are involved. We found that truncation of the QNL motif decreased the stability of ABCB4 in HepG2-transfected cells. The deleted mutant ABCB4-ΔQNL also displayed accelerated endocytosis. EBP50, a PDZ protein highly expressed in the liver, strongly colocalized and coimmunoprecipitated with ABCB4, and this interaction required the QNL motif. Down-regulation of EBP50 by siRNA or by expression of an EBP50 dominant-negative mutant caused a significant decrease in the level of ABCB4 protein expression, and in the amount of ABCB4 localized at the canalicular membrane. Interaction of ABCB4 with EBP50 through its PDZ-like motif plays a critical role in the regulation of ABCB4 expression and stability at the canalicular plasma membrane.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/biossíntese , Membrana Celular/metabolismo , Regulação da Expressão Gênica/fisiologia , Hepatócitos/metabolismo , Fosfoproteínas/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Motivos de Aminoácidos , Membrana Celular/genética , Células HEK293 , Células Hep G2 , Hepatócitos/citologia , Humanos , Domínios PDZ , Fosfoproteínas/genética , Trocadores de Sódio-Hidrogênio/genética
13.
Hepatology ; 63(5): 1620-31, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26474921

RESUMO

UNLABELLED: Progressive familial intrahepatic cholestasis type 3 is caused by biallelic variations of ABCB4, most often (≥70%) missense. In this study, we examined the effects of 12 missense variations identified in progressive familial intrahepatic cholestasis type 3 patients. We classified these variations on the basis of the defects thus identified and explored potential rescue of trafficking-defective mutants by pharmacological means. Variations were reproduced in the ABCB4 complementary DNA and the mutants, thus obtained, expressed in HepG2 and HEK293 cells. Three mutants were either fully (I541F and L556R) or largely (Q855L) retained in the endoplasmic reticulum, in an immature form. Rescue of the defect, i.e., increase in the mature form at the bile canaliculi, was obtained by cell treatments with cyclosporin A or C and, to a lesser extent, B, D, or H. Five mutations with little or no effect on ABCB4 expression at the bile canaliculi caused a decrease (F357L, T775M, and G954S) or almost absence (S346I and P726L) of phosphatidylcholine secretion. Two mutants (T424A and N510S) were normally processed and expressed at the bile canaliculi, but their stability was reduced. We found no defect of the T175A mutant or of R652G, previously described as a polymorphism. In patients, the most severe phenotypes appreciated by the duration of transplant-free survival were caused by ABCB4 variants that were markedly retained in the endoplasmic reticulum and expressed in a homozygous status. CONCLUSION: ABCB4 variations can be classified as follows: nonsense variations (I) and, on the basis of current findings, missense variations that primarily affect the maturation (II), activity (III), or stability (IV) of the protein or have no detectable effect (V); this classification provides a strong basis for the development of genotype-based therapies.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/deficiência , Colestase Intra-Hepática/genética , Mutação , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Ciclosporina/farmacologia , Células HEK293 , Células Hep G2 , Humanos , Fosfatidilcolinas/metabolismo
14.
Clin Res Hepatol Gastroenterol ; 38(5): 557-63, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24953525

RESUMO

Adenosine triphosphate (ATP)-binding cassette, sub-family B, member 4 (ABCB4), also called multidrug resistance 3 (MDR3), is a member of the ATP-binding cassette transporter superfamily, which is localized at the canalicular membrane of hepatocytes, and mediates the translocation of phosphatidylcholine into bile. Phosphatidylcholine secretion is crucial to ensure solubilization of cholesterol into mixed micelles and to prevent bile acid toxicity towards hepatobiliary epithelia. Genetic defects of ABCB4 may cause progressive familial intrahepatic cholestasis type 3 (PFIC3), a rare autosomic recessive disease occurring early in childhood that may be lethal in the absence of liver transplantation, and other cholestatic or cholelithiasic diseases in heterozygous adults. Development of therapies for these conditions requires understanding of the biology of this transporter and how gene variations may cause disease. This review focuses on our current knowledge on the regulation of ABCB4 expression, trafficking and function, and presents recent advances in fundamental research with promising therapeutic perspectives.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/fisiologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/deficiência , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Animais , Deficiências Nutricionais/tratamento farmacológico , Humanos , Mutação
15.
Hepatology ; 60(2): 610-21, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24723470

RESUMO

UNLABELLED: The ABCB4 transporter mediates phosphatidylcholine (PC) secretion at the canalicular membrane of hepatocytes and its genetic defects cause biliary diseases. Whereas ABCB4 shares high sequence identity with the multidrug transporter, ABCB1, its N-terminal domain is poorly conserved, leading us to hypothesize a functional specificity of this domain. A database of ABCB4 genotyping in a large series of patients was screened for variations altering residues of the N-terminal domain. Identified variants were then expressed in cell models to investigate their biological consequences. Two missense variations, T34M and R47G, were identified in patients with low-phospholipid-associated cholelithiasis or intrahepatic cholestasis of pregnancy. The T34M and R47G mutated proteins showed no or minor defect, respectively, in maturation and targeting to the apical membrane, in polarized Madin-Darby Canine Kidney and HepG2 cells, whereas their stability was similar to that of wild-type (WT) ABCB4. By contrast, the PC secretion activity of both mutants was markedly decreased. In silico analysis indicated that the identified variants were likely to affect ABCB4 phosphorylation. Mass spectrometry analyses confirmed that the N-terminal domain of WT ABCB4 could undergo phosphorylation in vitro and revealed that the T34M and R47G mutations impaired such phosphorylation. ABCB4-mediated PC secretion was also increased by pharmacological activation of protein kinases A or C and decreased by inhibition of these kinases. Furthermore, secretion activity of the T34M and R47G mutants was less responsive than that of WT ABCB4 to protein kinase modulators. CONCLUSION: We identified disease-associated variants of ABCB4 involved in the phosphorylation of its N-terminal domain and leading to decreased PC secretion. Our results also indicate that ABCB4 activity is regulated by phosphorylation, in particular, of N-terminal residues.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Colestase Intra-Hepática/genética , Colestase Intra-Hepática/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Complicações na Gravidez/genética , Complicações na Gravidez/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/química , Adolescente , Adulto , Animais , Polaridade Celular/fisiologia , Cães , Feminino , Genótipo , Células HEK293 , Células Hep G2 , Humanos , Células Madin Darby de Rim Canino , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Fosfatidilcolinas/metabolismo , Fosforilação/fisiologia , Gravidez , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína
16.
J Cell Sci ; 126(Pt 15): 3409-16, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23750006

RESUMO

Targeting of glycosyl-phosphatidylinositol (GPI)-anchored proteins (GPI-APs) in polarized epithelial cells depends on their association with detergent-resistant membrane microdomains called rafts. In MDCK cells, GPI-APs associate with rafts in the trans-Golgi network and are directly delivered to the apical membrane. It has been shown that oligomerization is required for their stabilization in rafts and their apical targeting. In hepatocytes, GPI-APs are first delivered to the basolateral membrane and secondarily reach the apical membrane by transcytosis. We investigated whether oligomerization is required for raft association and apical sorting of GPI-APs in polarized HepG2 cells, and at which step of the pathway oligomerization occurs. Model proteins were wild-type GFP-GPI and a double cysteine GFP-GPI mutant, in which GFP dimerization was impaired. Unlike wild-type GFP-GPI, which was efficiently endocytosed and transcytosed to the apical surface, the double cysteine mutant was basolaterally internalized, but massively accumulated in early endosomes, and reached the bile canaliculi with delayed kinetics. The double cysteine mutant was less resistant to Triton X-100 extraction, and formed fewer high molecular weight complexes. We conclude from these results that, in hepatocytes, oligomerization plays a key role in targeting GPI-APs to the apical membrane, by increasing their affinity for rafts and allowing their transcytosis.


Assuntos
Proteínas Ligadas por GPI/metabolismo , Hepatócitos/metabolismo , Processos de Crescimento Celular/fisiologia , Polaridade Celular/fisiologia , Cisteína , Endocitose/fisiologia , Proteínas Ligadas por GPI/genética , Células Hep G2 , Hepatócitos/citologia , Humanos , Transporte Proteico , Transcitose
17.
J Biol Chem ; 287(7): 5070-8, 2012 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-22184139

RESUMO

The ATP-binding cassette transporter ABCB4 is a phosphatidylcholine translocator specifically expressed at the bile canalicular membrane in hepatocytes, highly homologous to the multidrug transporter ABCB1. Variations in the ABCB4 gene sequence cause progressive familial intrahepatic cholestasis type 3. We have shown previously that the I541F mutation, when reproduced either in ABCB1 or in ABCB4, led to retention in the endoplasmic reticulum (ER)/Golgi. Here, Madin-Darby canine kidney cells expressing ABCB1-GFP were used as a model to investigate this mutant. We show that ABCB1-I541F is not properly folded and is more susceptible to in situ protease degradation. It colocalizes and coprecipitates with the ER chaperone calnexin and coprecipitates with the cytosolic chaperone Hsc/Hsp70. Silencing of calnexin or overexpression of Hsp70 have no effect on maturation of the mutant. We also tested potential rescue by chemical and pharmacological chaperones. Thapsigargin and sodium 4-phenyl butyrate were inefficient. Glycerol improved maturation and exit of the mutant from the ER. Cyclosporin A, a competitive substrate for ABCB1, restored maturation, plasma membrane expression, and activity of ABCB1-I541F. Cyclosporin A also improved maturation of ABCB4-I541F in Madin-Darby canine kidney cells. In HepG(2) cells transfected with ABCB4-I541F cDNA, cyclosporin A allowed a significant amount of the mutant protein to reach the membrane of bile canaliculi. These results show that the best strategy to rescue conformation-defective ABCB4 mutants is provided by pharmacological chaperones that specifically target the protein. They identify cyclosporin A as a potential novel therapeutic tool for progressive familial intrahepatic cholestasis type 3 patients.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Calnexina/metabolismo , Crioprotetores/farmacologia , Ciclosporina/farmacologia , Inibidores Enzimáticos/farmacologia , Glicerol/farmacologia , Proteínas de Choque Térmico HSC70/metabolismo , Mutação de Sentido Incorreto , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Substituição de Aminoácidos , Animais , Antineoplásicos/farmacologia , Calnexina/genética , Colestase/tratamento farmacológico , Colestase/genética , Colestase/metabolismo , Cães , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Inativação Gênica , Proteínas de Choque Térmico HSC70/genética , Células Hep G2 , Humanos , Fenilbutiratos/farmacologia , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/genética , Tapsigargina/farmacologia
18.
Mol Biol Cell ; 20(17): 3792-800, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19605558

RESUMO

In polarized hepatocytes, the predominant route for apical resident proteins to reach the apical bile canalicular membrane is transcytosis. Apical proteins are first sorted to the basolateral membrane from which they are internalized and transported to the opposite surface. We have noted previously that transmembrane proteins and GPI-anchored proteins reach the apical bile canaliculi at very different rates. Here, we investigated whether these differences may be explained by the use of distinct endocytic mechanisms. We show that endocytosis of both classes of proteins at the basolateral membrane of polarized hepatic cells is dynamin dependent. However, internalization of transmembrane proteins is clathrin mediated, whereas endocytosis of GPI-anchored proteins does not require clathrin. Further analysis of basolateral endocytosis of GPI-anchored proteins showed that caveolin, as well as the small GTPase cdc42 were dispensable. Alternatively, internalized GPI-anchored proteins colocalized with flotillin-2-positive vesicles, and down-expression of flotillin-2 inhibited endocytosis of GPI-anchored proteins. These results show that basolateral endocytosis of GPI-anchored proteins in hepatic cells occurs via a clathrin-independent flotillin-dependent pathway. The use of distinct endocytic pathways may explain, at least in part, the different rates of transcytosis between transmembrane and GPI-anchored proteins.


Assuntos
Polaridade Celular , Clatrina/metabolismo , Endocitose/fisiologia , Glicosilfosfatidilinositóis/metabolismo , Hepatócitos/citologia , Microdomínios da Membrana/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Antígenos CD13/genética , Antígenos CD13/metabolismo , Antígenos CD59/genética , Antígenos CD59/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Caveolina 1/genética , Caveolina 1/metabolismo , Linhagem Celular , Clatrina/genética , Dipeptidil Peptidase 4/genética , Dipeptidil Peptidase 4/metabolismo , Dinaminas/genética , Dinaminas/metabolismo , Glicosilfosfatidilinositóis/genética , Hepatócitos/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Transporte Proteico/fisiologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteína cdc42 de Ligação ao GTP/genética , Proteína cdc42 de Ligação ao GTP/metabolismo
19.
Hepatology ; 49(4): 1218-27, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19185004

RESUMO

UNLABELLED: Progressive familial intrahepatic cholestasis type 3 (PFIC3) is a rare liver disease characterized by early onset of cholestasis that leads to cirrhosis and liver failure before adulthood. PFIC3 may be improved by chronic administration of ursodeoxycholic acid, although in many cases liver transplantation is the only therapy. The disease is caused by mutations of the adenosine triphosphate (ATP)-binding cassette, sub-family B, member 4 (ABCB4) [multidrug resistance 3 (MDR3)] gene encoding a specific hepatocellular canalicular transporter involved in biliary phosphatidylcholine secretion. Several mutations have been reported; however, the effect of individual mutations has not been investigated. ABCB4 is highly homologous to ATP-binding cassette, sub-family B, member 1 (ABCB1) (MDR1), the multidrug transporter responsible for drug resistance of cancer cells. We have studied the effect of mutation I541F localized to the first nucleotide-binding domain, which is highly conserved between ABCB4 and ABCB1. Plasmids encoding the wild-type human ABCB4 or rat ABCB1-green fluorescing protein (GFP) construct, and corresponding I541F-mutants, were expressed in hepatocellular carcinoma, human (HepG2) and Madin-Darby canine kidney (MDCK) cells. Expression studies showed that ABCB4 was localized at the bile canalicular membrane in HepG2 cells and at the apical surface in MDCK cells, whereas the I541F mutant was intracellular. In MDCK cells, ABCB1-I541F also accumulated intracellularly in compartments, which were identified as the endoplasmic reticulum and cis-Golgi, and remained partially endoH-sensitive. After shifting cells to 27 degrees C, ABCB1-I541F was expressed at the apical cell surface in a mature and active form. Similarly, ABCB4 was significantly trafficked to the membrane of bile canaliculi in HepG2 cells. CONCLUSION: Mutation I541F causes mislocalization of both ABCB4 and ABCB1. Intracellular retention of ABCB4-I541F can explain the disease in PFIC3 patients bearing this mutation. The observation that plasma membrane expression and activity can be rescued by low temperature opens perspectives to develop novel therapies for the treatment of PFIC3.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Colestase Intra-Hepática/genética , Dobramento de Proteína , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Sequência de Aminoácidos , Animais , Canalículos Biliares/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Temperatura Baixa , Cães , Retículo Endoplasmático/metabolismo , Feminino , Expressão Gênica , Complexo de Golgi/metabolismo , Proteínas de Fluorescência Verde , Humanos , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Domínios e Motivos de Interação entre Proteínas
20.
Med Sci (Paris) ; 20(11): 1027-34, 2004 Nov.
Artigo em Francês | MEDLINE | ID: mdl-15525500

RESUMO

Cell and tissue imaging provides scientists with wonderful tools, thanks to a fruitful dialog between chemistry, optical, mechanical, computational sciences and biology. Confocal microscopy, videomicroscopy together with a new generation of fluorochromes (especially those derived from green fluorescent protein, GFP) and image analysis software allow to visualize life in all its dimensions (space and time). Cell imaging also allows to quantify biological processes at the cellular level, to analyse both stoechiometry and dynamics of molecular interactions involved in cell and tissue regulations. Entering the new era of post-genomics requires a better knowledge of advantages and limitations of these new approaches.


Assuntos
Processamento de Imagem Assistida por Computador , Microscopia Confocal , Fenômenos Fisiológicos Celulares , Genômica/tendências , Humanos , Microscopia de Vídeo , Óptica e Fotônica , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...